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Abstract

We consider the one-dimensional Burgers equation perturbed by a white noise term
with Dirichlet boundary conditions and a non-Lipschitz coefficient. We obtain existence
of a weak solution proving tightness for a sequence of polygonal approximations for the
equation and solving a martingale problem for the weak limit.
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1 Introduction

The one-dimensional Burgers equation

∂

∂t
u(t, x) = ν∆u(t, x)− λ

2
∇u2(t, x),

where ∆ = ∂2

∂x2 and ∇ = ∂
∂x , has been proposed as a model for turbulent fluid motion (see

[3, 4, 8]).

Burgers equations perturbed by space-time white noises with Lipschitz coefficients have
been studied recently by several authors (see e.g. [1, 6, 2] and the references therein).

Our aim in this paper is to study a one-dimensional Burgers equation perturbed by a
stochastic noise term with a non-Lipschitz coefficient, namely,

∂

∂t
u(t, x) = ∆u(t, x) + λ∇u2(t, x) + γ

√
u(t, x)(1− u(t, x))

∂2

∂t∂x
W (t, x),

u(t, 0) = u(t, 1) = 0, (1.1)

u(0, x) = f(x), x ∈ [0, 1],

where f(x) : [0, 1] → [0, 1] is a continuous function and ∂2

∂t∂xW (t, x) is the space-time white
noise (see [16] for the definition and properties of the white noise). The stochastic term in
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this equation corresponds to continuous-time stepping-stone models in population genetics
([5, 12]), where u(t, x) models the gene frequency in colonies.

Equation (1.1) is interpreted in the weak sense, which means that for each ϕ ∈ C2([0, 1]),∫
[0,1]

u(t, x)ϕ(x) dx =
∫

[0,1]
u(0, x)ϕ(x) dx +

∫
[0,1]

u(t, x)ϕ′′(x) dx (1.2)

− λ

∫ t

0

∫
[0,1]

u2(s, x)ϕ′(x) dx ds

+ γ

∫ t

0

∫
[0,1]

√
u(s, x)(1− u(s, x))ϕ(x) W (ds, dx).

Since the coefficients of (1.1) are non-Lipschitz, the standard results on existence and unique-
ness of solutions cannot be applied.

In this paper we prove existence of a non-negative weak solution of (1.1) (Theorem 4.2).
Our method of proof is briefly described as follows. Following Funaki [7], in Section 1 we
define a discrete version of (1.1), which is a finite-dimensional system (2.2) of stochastic
differential equations. In Section 2 we prove existence of a weak solution for this system, and
use the method of Le Gall [11] to obtain pathwise uniqueness of weak solutions. This yields
existence of a unique strong solution xN

k (t) of (2.2). Next, in Section 3, we define a system

of polygonal approximations uN (t, x) of xN
k (t), and use the multidimensional Kolmogorov-

Totoki criterion to obtain tightness of {uN (t, x), N = 1, 2, . . .}. In the last section we use a
martingale problem to conclude the proof of existence of a weak solution of equation (1.1).

2 Existence of a solution of the discretized version

Let us fix an integer N ≥ 1 and consider the discretized version of (1.1) on the set { k
N , 1 ≤

k ≤ N}:

∂

∂t
XN

(
t,

k

N

)
= ∆NXN

(
t,

k

N

)
+∇N

(
X2

N

(
t,

k

N

))
(2.1)

+

√
NXN

(
t,

k

N

) (
1−XN

(
t,

k

N

))
dBk(t),

XN

(
0,

k

N

)
= f

(
k

N

)
, 1 ≤ k ≤ N, t ≥ 0.

Here N is the set of the non-negative integer numbers, {Bk(t)}1≤k≤N is an infinite system
of independent one-dimensional Brownian motions and ∇N and ∆N are, respectively, the
discrete approximations of the first and second derivative with respect to the variable x:

∆NXN

(
t,

k

N

)
=

XN

(
t, k+1

N

)
− 2XN

(
t, k

N

)
+ XN

(
t, k−1

N

)
1

N2

,
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∇N h

(
s,

k

N

)
=

h
(
s, k+1

N

)
− h

(
s, k

N

)
1
N

, 1 ≤ k ≤ N.

Let us write xN
k (t) = XN

(
t, k

N

)
. Substituting the above expressions in equation (2.1) we

obtain the finite-dimensional system of stochastic differential equations

dxN
i (t) = N2

[
xN

i+1(t)− 2xN
i (t) + xN

i−1(t)
]
+ NxN

i+1(t)−NxN
i (t)

+
√

NxN
i (t)

(
1− xN

i (t)
)
dBi(t), i = 1, ..., N,

which can be written in the more compact form

dxN
i (t) =

 N∑
j=1

aN
ij x

N
j (t) + bN

ij x
N
j (t)2

 dt +
√

NxN
i (t)

(
1− xN

i (t)
)
dBi(t) (2.2)

xN
i (0) = f(i/N), 1 ≤ i, j ≤ N,

where

aN
ij =


N2 if j = i + 1, i− 1,
−2N2 if j = i,
0 otherwise

and

bN
ij =


N if j = i + 1,
−N if j = i,
0 otherwise.

Note that for this system we cannot apply the standard results on existence and uniqueness
of solution because Lipschitz assumptions on the drift and diffusion coefficients fail. We prove
the following result.

Theorem 2.1. For any initial random condition XN (0) = (xN
1 , ..., xN

N ) ∈ [0, 1]N , the
system

dxN
i (t) =

∑
j

aN
ij x

N
j (t) +

∑
j

bN
ij x

N
j (t)2

 dt +
√

NxN
i (t)(1− xN

i (t)) dBi(t) (2.3)

xN
i (0) = xi, i = 1, ..., N,

admits a unique strong solution XN (t) = (xN
1 (t), . . . , xN

N (t)) ∈ C([0,∞), [0, 1]N ).

Proof. Let us consider the re-scaled system

dxN
i (t) =

∑
j

aN
ij x

N
j (t) +

∑
j

bN
ij x

N
j (t)2

 dt +
√

g(xN
i (t)) dBi(t) (2.4)

xN
i (0) = xi, i = 1, ..., N,
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where g : R → R is defined by g(x) = Nx(1−x) for 0 ≤ x ≤ 1, and g(x) = 0 otherwise. Since
the coefficients of (2.4) are continuous, by the Skorohod’s existence theorem ([14, 10]) we
conclude that there exists on some probability space a weak solution XN (t) of (2.4). We will
prove that for each weak solution XN (t) = (xN

1 (t), . . . , xN
N (t)) of this system, xN

i (t) ∈ [0, 1]

for all i = 1, . . . , N and t ≥ 0, thus showing that XN (t) is a solution of (2.3).

First we show that xN
i (t) ≥ 0 for each i = 1 . . . , N . Since the coefficients of the system

are non-Lipschitz, the solution may explode in finite time. Let τ1 ≤ ∞ denote the explosion
time of the solution. If some of the solution coordinates are negative, then there exists a
random time 0 < τ2 ≤ ∞ such that for 0 < t ≤ τ2 all such coordinates are between −1 and
0. This is so because (2.4) is finite-dimensional, and its solution is continuous.

We shall use the following lemma ([11]).

Lemma 2.2. Let Z ≡ {Z(t), t ≥ 0} be a real-valued semimartingale. Suppose that

there exists a function ρ : [0,∞) → [0,∞) such that
∫ ε
0

du
ρ(u) = +∞ for all ε > 0, and∫ t

0

1{Zs>0}
ρ(Zs)

d〈Z〉s < ∞ for all t > 0 a.s. Then the local time at zero of Z, L0
t (Z), is identically

zero for all t a.s.

Applying Lemma 2.2 to xN
i (t) with ρ(u) = u and using the Tanaka formula ([13]), we

obtain for xN
i (t)− := max[0,−xN

i (t)],

N∑
i=1

xN
i (t)− = −

∫ t

0

N∑
i=1

1xN
i (s)<0

N∑
j=1

(aN
ij xj(s) + bN

ij xj(s)2) ds

≤
∫ t

0

N∑
i,j=1

1xN
i (s)<0a

N
ij xj(s)− ds + N

∫ t

0

N∑
i=1

1xN
i (s)<0xi(s)2 ds

≤
∫ t

0

N∑
i,j=1

aN
ij xj(s)− ds + N

∫ t

0

N∑
i=1

xN
i (s)− ds

= N

∫ t

0

N∑
i=1

xN
i (s)− ds,

where we used that
∑

i a
N
ij = 0 to obtain the last equality. Then by Gronwall’s lemma we

obtain that
∑N

i=1 xN
i (t)− = 0, and hence that the solution is non-negative for each t ≥ 0. By

a similar argument applied to (1− xN
i (t))−, it follows that xN

i (t) ≤ 1 for each 1 ≤ i ≤ N.

Using Lemma 2.2 we shall prove pathwise uniqueness of weak solutions of (2.3). Let

X1,N = (x1,N
1 , . . . , x1,N

N ) and X2,N = (x2,N
1 , . . . , x2,N

N ) be two solutions of (2.3) with the same
initial conditions and the same Brownian motions. We define

di

(
X l,N (t)

)
= aN

ij x
l,N
j (t) + bN

ij x
l,N
j (t)2, t ≥ 0, l = 1, 2.
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Then

x1,N
i (t)− x2,N

i (t) =
∫ t

0

[
di

(
X1,N (s)

)
− di

(
X2,N (s)

)]
ds

+
∫ t

0

[√
Nx1,N

i (s)(1− x1,N
i (s))−

√
Nx2,N

i (s)(1− x2,N
i )(s)

]
dBi(s),

i = 1, . . . , N,

Since

〈X〉t =
∫ t

0

[√
Nx1,N

i (s)(1− x1,N
i (s))−

√
Nx2,N

i (s)(1− x2,N
i )(s)

]2

ds

and

∫ t

0

[√
Nx1,N

i (s)(1− x1,N
i (s))−

√
Nx2,N

i (s)(1− x2,N
i )(s)

]2

x1,N
i (s)− x2,N

i (s)
1

x1,N
i (s)−x2,N

i (s)>0
ds

≤
∫ t

0
2N1

x1,N
i (s)−x2,N

i (s)>0
ds < 2Nt

(where we used that (
√

x(1− x) −
√

y(1− y) )/(x − y) < 2 for x, y ∈ [0, 1], x > y, which

follows from L’Hospital rule), we can apply Lemma 2.2 to X(t) = x1,N
i (t) − x2,N

i (t) with

ρ(x) = x. Therefore, L0
t

(
x1,N

i (s)− x2,N
i (s)

)
= 0 for all i ∈ {1, . . . , N}.

By Tanaka’s formula,∣∣∣x1,N
i (t)− x2,N

i (t)
∣∣∣

=
∫ t

0
sgn

(
x1,N

i (s)− x2,N
i (s)

) (
di

(
X1,N (s)

)
− di

(
X2,N (s)

))
ds

+
∫ t

0
sgn

(
x1,N

i (s)− x2,N
i (s)

)[√
Nx1,N

i (s)
(
1− x1,N

i (s)
)
−

√
Nx2,N

i (s)
(
1− x2,N

i (s)
)]

· dBi(s), i = 1, . . . , N.

Since aN
ij and bN

ij are bounded, it follows that

E
N∑

i=1

∣∣∣x1,N
i (t)− x2,N

i (t)
∣∣∣ ≤

∫ t

0
E

N∑
i=1

∣∣di

(
X1,N (s)

)
− di

(
X2,N (s)

)∣∣ ds

≤
∫ t

0
K(N) E

N∑
i=1

∣∣∣x1,N
i (s)− x2,N

i (s)
∣∣∣ ds,
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where K(N) is a constant depending on N. From Gronwall’s inequality we conclude that

E
d∑

i=1

∣∣∣x1,N
i (t)− x2,N

i (t)
∣∣∣ = 0

for all t ≥ 0, thus proving pathwise uniqueness. By a classical theorem of Yamada and
Watanabe [17], this is sufficient for existence of a unique strong solution of (2.3). 2

3 Tightness of the approximating processes

As a consequence of Theorem 2.1, there exists a strong solution of the system approximating
(1.1)

dxN
i (t) =

∑
1≤j≤N

aN
ij x

N
j (t) +

∑
1≤j≤N

bN
ij x

N
j (t)2 +

√
NxN

i (t)
(
1− xN

i (t)
)
dBi(t) (3.1)

xN
i (0) = f

(
i

N

)
, i = 1, 2, ..., N,

where N ∈ N is fixed. We denote by uN (t, x) the polygonal approximation of xN
i (t),

uN (t, x) = XN

(
t,

[Nx] + 1
N

)
(Nx− [Nx]) + XN

(
t,

[Nx]
N

)
([Nx] + 1−Nx), (3.2)

t ≥ 0, x ∈ [0, 1],

where by definition [y] = k
N for k

N ≤ y < k+1
N . Therefore we have XN (t, k

N ) = xN
k (t) =

uN

(
t, k

N

)
, 1 ≤ k ≤ N , and 0 ≤ uN (t, x) ≤ 1 for all t ≥ 0, x ∈ [0, 1].

Let pN

(
t, i

N , j
N

)
, t ≥ 0, 0 ≤ i, j ≤ N + 1, be the fundamental solution of ∆N , i.e.,

∂

∂t
pN

(
t,

i

N
,

j

N

)
= ∆NpN

(
t,

i

N
,

j

N

)
, t > 0, 1 ≤ i, j ≤ N

pN

(
0,

i

N
,

j

N

)
= Nδij ,

with the boundary conditions

pN

(
t, 0,

j

N

)
= pN

(
t,

N + 1
N

,
j

N

)
= 0, t > 0, 1 ≤ j ≤ N.

Then (3.1) is equivalent to the system (see [9])

xN
i (t) =

N∑
j=1

1
N

pN

(
t,

i

N
,

j

N

)
xN

j (0) +
∫ t

0

 N∑
j=1

1
N

pN

(
t− s,

i

N
,

j

N

)
b(i, j)xN

j (s)2

 ds

6



+
∫ t

0

N∑
j=1

[
pN

(
t− s,

i

N
,

j

N

) √
NxN

j (s)
(
1− xN

j (s)
)]

dBj(s), 1 ≤ i ≤ N,

where in the last integral we used that { 1
N Bj(s), 1 ≤ j ≤ N} is an independent system of

Brownian motions which we also denote by {Bj(s)}.

Let us define the re-scaled polygonal interpolation GN of pN in [0, 1] by

GN (t, x,
j

N
) = pN

(
t,

[Nx] + 1
N

,
j

N

)
(Nx− [Nx]) + pN

(
t,

[Nx]
N

,
j

N

)
([Nx] + 1−Nx) .

Using (3.2) and (3.3) we obtain the following representation for the approximate solution.
For x ∈ [ i

N , i+1
N ),

uN (t, x) =
N∑

j=1

1
N

GN

(
t, x,

j

N

)
uN

(
0,

j

N

)

+
∫ t

0

N∑
j=1

[
1
N

pN

(
t− s,

i + 1
N

,
j

N

)
b(i + 1, j)xN

j (s)2(Nx− [Nx])

+
1
N

pN

(
t− s,

i

N
,

j

N

)
b(i, j)xN

j (s)2([Nx] + 1−Nx)
]

ds

+
∫ t

0

N∑
j=1

GN

(
t− s, x,

j

N

) √
NuN

(
s,

j

N

) (
1− uN

(
s,

j

N

))
dBj(s) ds

:= u
(1)
N (t, x) + u

(2)
N (t, x) + u

(3)
N (t, x).

Then uN (t, x) satisfies the boundary conditions in (1.1).

Theorem 3.1. For each T > 0, the sequence {uN (t, x), N ≥ 1} is tight in the space
C([0, T ], A), where A = C([0, 1], [0, 1]).

Proof. Using the fact that uN (t, x) ∈ [0, 1], we obtain, as in the proof of Lemma 2.2 and
Proposition 2.1 in [7], that for each T < ∞ and p ∈ N there exists C = C(T, p) > 0 such that

E
∣∣∣u(3)

N (t1, x)− u
(3)
N (t2, y)

∣∣∣2p
≤ C(|t1 − t2|p/2 + |x− y|p/2) (3.3)

for every t1, t2 ∈ [0, T ], x, y ∈ [0, 1] and N ∈ N, and that

lim
N→∞

sup
(t,y)∈[0,T ]×[0,1]

|u(1)
N (t, y)− u(t, y)| = 0, (3.4)

where u(t, y) is the fundamental solution of ∆. Since

u
(2)
N

(
t,

k

N

)
=

∫ t

0

[
pN

(
t− s,

k

N
,
k + 1

N

)
xN

k+1(s)
2 − pN

(
t− s,

k

N
,

k

N

)
xN

k (s)2
]

ds
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and pN is a fundamental solution of ∆N , it follows that

∂

∂t
u

(2)
N

(
t,

k

N

)
= ∆Nu

(2)
N

(
t,

k

N

)
+ uN

(
t,

k + 1
N

)2

− uN

(
t,

k

N

)2

.

Also, u
(2)
N (t, 0) = u

(2)
N (t, 1) = 0 by the boundary condition (3.3). Integration by parts and an

application of Gronwall’s inequality give, as in [9] (Thm. 4.2),

max
1≤k≤N

∣∣∣∣u(2)
N

(
t,

k

N

)∣∣∣∣ ≤ e2t

∫ t

0
max

1≤k≤N

∣∣∣∣u(1)
N

(
s,

k

N

)
+ u

(3)
N

(
s,

k

N

)∣∣∣∣ ds.

Hence, from the polygonal form of u
(2)
N and (3.3), (3.4) we obtain that for every T < ∞ and

p ∈ N there exists C1 = C1(T, p) > 0 such that

E
∣∣∣u(2)

N (t1, x)− u
(2)
N (t2, y)

∣∣∣2p
≤ C1(|t1 − t2|p/2 + |x− y|p/2) (3.5)

for every t1, t2 ∈ [0, T ], x, y ∈ [0, 1] and N ∈ N. It follows from the multidimensional
Kolmogorov’s-Totoki criterion [15] that uN (t, x) ∈ C([0, T ], A) and that the family {uN (t, x),
N ∈ N} is tight in C([0, T ], A) for each positive T . 2

4 The martingale problem for the SPDE

Since the sequence {uN (t, x), N ≥ 1} is tight by Theorem 3.1, there exists a subsequence,
which we denote again by {uNk

(t, x)}, that converges weakly in C([0, T ], A) to a limit v(t, x).
By the Skorokhod’s representation theorem we can construct processes {vN (t, x)}, u(t, x)

on some probability space (Ω,F , {Ft}, P ), such that {uN}
D= {vN}, u

D= v, and {vN (t, x)}
converges to u(t, x) uniformly on compact subsets of [0, T ] × R for any T > 0 as N → ∞.
Obviously u(t, x) satisfies the boundary conditions in (1.1). We shall show that u(t, x) is a
weak solution of (1.1) by solving the corresponding martingale problem.

Theorem 4.1. For any ϕ ∈ C2
c ,

Mϕ(t) :=
∫

[0,1]
u(t, x)ϕ(x) dx−

∫
[0,1]

u(0, x)ϕ(x) dx−
∫

[0,1]
u(t, x)ϕ′′(x) dx

−
∫ t

0

∫
[0,1]

u2(s, x)ϕ′(x) dx

is an {Ft}-martingale with 〈Mϕ〉t =
∫ t
0

∫
[0,1] u(s, x)((1− u(s, x))ϕ2(x) dx ds.

Proof. Using that ∑
n∈Z

an (bn+1 − bn) +
∑
n∈Z

bn+1 (an+1 − an) = 0

8



and multiplying both sides of (2.1) by ϕ( k
N ) 1

N , we obtain for fixed N ≥ 1,

MN
ϕ (t) :=

N∑
k=1

uN

(
t,

k

N

)
ϕ

(
k

N

)
1
N
−

N∑
k=1

uN

(
0,

k

N

)
ϕ

(
k

N

)
1
N

−
∫ t

0

N∑
k=1

∆NuN

(
s,

k

N

)
ϕ

(
k

N

)
1
N
−

∫ t

0

N∑
k=1

∇N

{
u2

N

(
s,

k

N

)}
ϕ

(
k

N

)
1
N

=
∑

k

vN

(
t,

k

N

)
ϕ

(
k

N

)
1
N
−

∑
k

vN

(
0,

k

N

)
ϕ

(
k

N

)
1
N

−
∫ t

0

∑
k

vN

(
s,

k

N

)
∆Nϕ

(
k

N

)
1
N
−

∫ t

0

∑
k

v2
N

(
s,

k

N

)
∇Nϕ

(
k

N

)
1
N

=
∑

k

ϕ

(
k

N

)
1
N

∫ t

0

√
NvN

(
s,

k

N

) (
1− vN

(
s,

k

N

))
dBk(s). (4.1)

Hence MN
ϕ (t) is a martingale because by (4.1) MN

ϕ (t) is the sum of a finite number of

martingales. Moreover,
{
MN

ϕ (t)
}

is uniformly integrable because supN∈N E(MN
ϕ (t))2 < ∞

uniformly in t ∈ [0, T ]. Indeed, since ϕ2 is integrable,

E(MN
ϕ (t))2 =

∑
k

ϕ2

(
k

N

)
1
N

∫ t

0

[
vN

(
s,

k

N

) (
1− vN

(
s,

k

N

))]
ds

≤ T
∑

k

1
N

ϕ2

(
k

N

)
< C(ϕ, T ),

where C(ϕ, T ) is a finite constant depending only on ϕ and T , but not on N . Therefore
MN

ϕ (t) →Mϕ(t) as N →∞, where

Mϕ(t) =
∫

[0,1]
v(t, x)ϕ(x) dx−

∫
[0,1]

v(t, 0)ϕ(x) dx−
∫ t

0

∫ 1

0
v(s, x)ϕ′′(x) dx ds

−
∫ t

0

∫ 1

0
v2(s, x)ϕ′(x) dx ds (4.2)

is a martingale. From (4.1) we obtain the quadratic variation of Mϕ(t), which is given by

〈MN (ϕ)〉t =

〈∑
k

ϕ

(
k

N

)
1
N

∫ t

0

√
NvN

(
s,

k

N

) (
1− vN

(
s,

k

N

))
dBk(s)

〉
t

=
∫ t

0

∑
k

NvN

(
s,

k

N

) (
1− vN

(
s,

k

N

))
ϕ2

(
k

N

)
1

N2
ds.
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Hence limN→∞ 〈MN (ϕ)〉t =
∫ t
0

∫
[0,1] v(s, x) (1− v(s, x))ϕ2(x) dx ds = 〈M(ϕ)〉t, and the the-

orem is proved. 2

Now we proceed to the proof of the main result.

Theorem 4.2. u(t, x) is a weak solution of the stochastic partial differential equation
(1.1).

Proof. To the quadratic variation 〈M(ϕ)〉t there corresponds a martingale measure

M(dt, dx) with quadratic measure ν(dx dt) = u(t, x)(1 − u(t, x)) dx dt (see [16]). Let W̃ be
a white noise independent of M (defined possibly on a extended probability space). Let us
define

Wt(ϕ) =
∫

[0,1]

∫ t

0

1
u(s, x) (1− u(s, x))

1{u(s,x) 6∈{0,1}}ϕ(x)M(ds, dx)

+
∫

[0,1]

∫ t

0
1{u(s,x)∈{0,1}}ϕ(x)W̃ (ds, dx).

Then Wt corresponds to a space -time white noise W (ds, dx) such that

Mt(ϕ) =
∫

[0,1]

∫ t

0

√
u(s, x)(1− u(s, x))ϕ(x) W (ds, dx).

From (4.2) we conclude that u(t, x) satisfies (1.2), and hence that u(t, x) is a weak solution
of (1.1). The theorem is proved. 2
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